
Open Journal of Statistics, 2020, 10, 113-126 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2020.101009  Feb. 28, 2020 113 Open Journal of Statistics 
 

 
 
 

Variable Selection via Biased Estimators in the 
Linear Regression Model 

Manickavasagar Kayanan1,2, Pushpakanthie Wijekoon3  

1Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka 
2Department of Physical Science, Vavuniya Campus of the University of Jaffna, Vavuniya, Sri Lanka 
3Department of Statistics and Computer Science, University of Peradeniya, Peradeniya, Sri Lanka 

 
 
 

Abstract 
Least Absolute Shrinkage and Selection Operator (LASSO) is used for varia-
ble selection as well as for handling the multicollinearity problem simulta-
neously in the linear regression model. LASSO produces estimates having 
high variance if the number of predictors is higher than the number of ob-
servations and if high multicollinearity exists among the predictor variables. 
To handle this problem, Elastic Net (ENet) estimator was introduced by 
combining LASSO and Ridge estimator (RE). The solutions of LASSO and 
ENet have been obtained using Least Angle Regression (LARS) and LARS-EN 
algorithms, respectively. In this article, we proposed an alternative algorithm 
to overcome the issues in LASSO that can be combined LASSO with other ex-
iting biased estimators namely Almost Unbiased Ridge Estimator (AURE), 
Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal 
Component Regression Estimator (PCRE), r-k class estimator and r-d class 
estimator. Further, we examine the performance of the proposed algorithm 
using a Monte-Carlo simulation study and real-world examples. The results 
showed that the LARS-rk and LARS-rd algorithms, which are combined 
LASSO with r-k class estimator and r-d class estimator, outperformed other 
algorithms under the moderated and severe multicollinearity.  
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1. Introduction 

Due to the simplicity and interpretability, linear regression models play a signif-
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icant role in modern statistical methods. The linear regression model aspires to 
find the linear relationship between the dependent variable and the non-stochastic 
explanatory variables for the prediction purpose. 

Let us consider the linear regression model  

= +y Xβ                             (1) 

where y  is the 1n ×  vector of observations on the dependent variable, X  is 
the n p×  matrix of observations on the non-stochastic predictor variables, β  
is a 1p ×  vectors of unknown coefficients, and   is the 1n ×  vector of ran-
dom error terms, which is independent and identically normally distributed with 
mean zero and common variance 2σ , that is ( ) 0E =  and ( ) 2E σ′ = = IΩ . 

It is well known that the Ordinary Least Square Estimator (OLSE) is the Best 
Linear Unbiased Estimator (BLUE) for finding the unknown parameter vector in 
model (1), which can be obtained by minimizing Error Sum of Squares (ESS),  

( ) ( ) ( )ESS ′′= = − −y X y Xβ β β                  (2) 

with respect to β , and defined as  

( ) ( ){ } ( ) 1ˆ arg min .OLSE
−′ ′ ′= − − =y X y X X X X y

β
β β β           (3) 

However, the OLSE is unstable and produces parameter estimates with high 
variance when multicollinearity exists on X . As a curative action to the multi-
collinearity problem, the biased estimators have been used by many researchers. 
The following biased estimators are popular in statistical literature:  
 Principal Component Regression Estimator (PCRE) [1]  

( ) 1ˆ ˆ ,PCRE h h h h h h OLSE
−′ ′ ′ ′ ′= =T T X XT T X y T Tβ β                (4) 

where ( )1 2, , ,h ht t t=T   is the first h columns of the standardized eigenvectors 
of ′X X .  
 Ridge Estimator (RE) [2]  

( ) ( )

( )

2

1

1

ˆ arg min

,

p

RE j
j

k

k

β
=

−

 ′= − − + 
 

′ ′= +

∑y X y X

X X I X y

β
β β β

             (5) 

where 0k >  is the regularization parameter, and I  is the p p×  identity 
matrix. 
 r-k class estimator [3]  

( ) ( )1 1ˆ .rk h h h h h hk k− −′ ′ ′ ′ ′ ′ ′= + = +T T X XT I T X y T T X X I X yβ           (6) 

Note that r-k class estimator is a combination of PCRE and RE.  
 Almost Unbiased Ridge Estimator (AURE) [4]  

( )( )22ˆ ˆ .AURE OLSEk k −′= − +I X X Iβ β                    (7) 

 Liu Estimator (LE) [5]  

( ) ( ) ( ) ( )1 1ˆ ˆ ˆ ,LE OLSE OLSEd d− −′ ′ ′ ′= + + = + +X X I X y X X I X X Iβ β β       (8) 
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where 0 1d< <  is the regularization parameter.  
 Almost Unbiased Liu Estimator (AULE) [6]  

( ) ( )( )2 2ˆ ˆ1 .AULE OLSEd −′= − − +I X X Iβ β                 (9) 

 r-d class estimator [7]  

( ) ( )( )
( ) ( )

1 1

1

ˆ

ˆ .

rd h h h h h h

h h OLSE

d

d

− −

−

′ ′ ′ ′ ′ ′= + +

′ ′ ′= + +

T T X XT I I T X XT T X y

T T X X I X X I

β

β
           (10) 

Note that r-d class estimator is a combination of PCRE and LE.  
According to Kayanan and Wijekoon [8], the generalized form to represent 

the estimators RE, AURE, LE, AULE, PCR, r-k class estimator and r-d class es-
timator is given by  

ˆ ˆ
G OLSE=Gβ β                          (11) 

where  

( )
( )( )

( ) ( )
( ) ( )( )

( )
( ) ( )

1

22

1

2 2

1

1

ˆ if
ˆ if

ˆ if
ˆ ˆ if 1

ˆ if
ˆ if
ˆ if
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rd h h
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−

−

−

−

−

−

 ′ ′= +

 ′= − +

 ′ ′= + += ′ = − − +

 ′=

 ′ ′ ′= +


′ ′ ′= + +

G X X I X X

G I X X I

G X X I X X I

G I X X I

G T T

G T T X X I X X

G T T X X I X X I

β

β

β

β β

β

β

β

 

In recent studies, Kayanan and Wijekoon [8] have shown that r-k class esti-
mator and r-d class estimator outperformed other estimators for the selected 
range of regularization parameter values when multicollinearity exists among 
the predictor variables. However, biased estimators introduce heavy bias when 
the number of predictor variables is high, and the final model may contain some 
irrelevant predictor variables as well. To handle this issue, Tibshirani [9] pro-
posed the Least Absolute Shrinkage and Selection Operator (LASSO) as  

( ) ( ){ }
1

ˆ arg min subject to ,
p

LASSO j
j

tβ
=

′= − − ≤∑y X y X
β

β β β      (12) 

where 0t ≥  is a turning parameter. Note that we cannot find an analytic solu-
tion for LASSO since 

1
p

jj β
=∑  is a non-differentiable function. Tibshirani [9] 

and Fu [10] have used the standard quadratic programming technique and 
shooting algorithm, respectively, to find solutions for LASSO. Apart from these 
two methods, the Least Angle Regression (LARS) algorithm proposed by Efron 
et al. [11] is a popular one in the recent literature to find LASSO solutions. The 
LASSO wields both the multicollinearity problem and variable selection simul-
taneously in the linear regression model. However, LASSO failed to outperform 
RE if high multicollinearity exists among predictors, and it is unsteady when the 
number of predictors is higher than the number of observations [12]. To over-
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come this problem, Zou and Hastie [12] proposed Elastic net (ENet) estimator 
by combining LASSO and RE as  

( ) ( ) 2

1 1

ˆ arg min subject to .
p p

Enet j j
j j

k tβ β
= =

 ′= − − + ≤ 
 

∑ ∑y X y X
β

β β β   (13) 

The LARS-EN algorithm, which is a modified version of the LARS algorithm, 
has been used to obtain solutions for ENet. 

In this work, we propose generalized version of LARS algorithm that can be 
combined LASSO with other biased estimators such as AURE, LE, AULE, PCRE, 
r-k class and r-d class estimators. Further, we compared the prediction perfor-
mance of proposed algorithm with existing algorithms of LASSO and Enet using 
a Monte-Carlo simulation study and real-world examples. The structure of the 
rest of the article is as follows: Section 2 contains proposed algorithms, Section 3 
shows the comparison of proposed algorithm, Section 4 concludes the article, 
and references are provided at the end of the paper. 

2. Generalized Least Angle Regression (GLARS) Algorithm 

Based on Efron et al. [11] and Hettigoda [13], now we propose GLARS algo-
rithm as follows: 

Step 1: Standardize the predictor variables X  to have a mean of zero and a 
standard deviation of one, and response variable y  to have a mean zero.  

Step 2: Start with the initial estimated value of β  as ˆ 0=β , and the residual 

0 =r y .  
Step 3: Find the predictor 1jX  most correlated with 0r  as follows  

( )1 0max , ; 1,2, , .j jj
X Cor X j p= =r                 (14) 

Then increase the estimate of 1
ˆ

jβ  from 0 until any other predictor 2jX  has 
a high correlation with the current residual as 1jX  does. At this point, GLARS 
proceeds in the equiangular direction between the two predictors 1jX  and 

2jX  instead of continuing in the direction based on 1jX . 
In a similar way, the ith variable jiX  eventually earns its way into the active 

set, and then GLARS proceeds in the equiangular direction between 1 2, , ,j j jiX X X . 
Continue adding variables to the active set in this way moving in the direction 
defined by the least angle direction. In the intermediate steps, the coefficient es-
timates are updating using the following formula: 

( )1
ˆ ˆ ,ji i ij i α−= + uβ β                       (15) 

where iα  is a value between [0,1] which represents how far the estimate moves 
in the direction before another variable enters the model and the direction 
changes again, and iu  is the equiangular vector. 

The direction iu  is calculated using the following formula: 

( ) 1
1,i E i i i i

−
−′ ′ ′ ′=u G E X XE E X r                   (16) 

where iE  is the matrix with column ( )1 2, , ,j j jie e e , je  be the jth standard 
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unit vector in p  which has the index of variables selected in each subsequent 
steps, and EG  is a generalized variable which can be substituted by respective 
expressions for any of estimators of our interest as listed in Table 1. Then, iα  
is calculated as follows: 

{ }*min , , [0,1]i ji ji jiα α α α+ −= ∈                  (17) 

where 

( ) ( )
( ) ( )

1 1

1

, ,

, ,
i ji i j

ji
i ji i j

Cor X Cor X

Cor X Cor X
α − −±

−

±
=

±

r r

r Xu
              (18) 

for any j such that ( )1
ˆ 0j i− =β , and 

( )1*
ˆ

j i
ji

i

α −= −
u

β
                        (19) 

for any j such that ( )1
ˆ 0j i− ≠β .  

Step 4: If *
i jiα α= , then iE  is the matrix formed by removing the column 

je  from 1i−E . Then the residual ir  related to the current step is calculated as  

1 ,i i i iα−= −r r Xu                        (20) 

and then move to the next step where 1+ij  is the value of j such that i jiα α+=  
or i jiα α−=  or *

jiα .  
Step 5: Proceed Step 3 until 1iα = .  
In Table 1, 

EpI  is the E Ep p×  identity matrix, Ep  is the number of se-
lected variables in each subsequent step, and ( )1 2, , ,

E Eh ht t t=T 
 is the first Eh  

columns of the standardized eigenvectors of i i′ ′E X XE . 

2.1. Properties of GLARS 

GLARS algorithm sequentially updates the combined estimates of LASSO and 
other estimators. It requires ( )3 2O m pm+  operations, where m is the number 
of steps. The prediction performance of the GLARS is evaluated using the Root  
 
Table 1. EG  of the estimators for GLARS. 

Estimators EG  

OLSE iE  

RE ( )( ) ( )1

i i i i ik
−

′ ′ ′ ′+E E X X I E E X XE  

AURE ( )( )( )22

Ei p i ik k
−

′ ′− +E I E X X I E  

LE ( )( ) ( )( )1

i i i i id
−

′ ′ ′ ′+ +E E X X I E E X X I E  

AULE ( ) ( )( )( )221
Ei p i id

−
′ ′− − +E I E X X I E  

PCRE 
E Eh h i′T T E  

r-k class ( )( ) ( )1

E Eh h i i i i ik
−

′ ′ ′ ′ ′+T T E E X X I E E X XE  

r-d class ( )( ) ( )( )1

E Eh h i i i i id
−

′ ′ ′ ′ ′+ +T T E E X X I E E X X I E  
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Mean Square Error (RMSE) criterion, which is described in Section 3. We can 
use GLARS to combine LASSO and any of estimators as listed in Table 1. 

Note that GLARS provides LASSO and ENet solutions when EG  equals to 
the corresponding expressions of OLSE and RE, respectively. For simplicity, we 
refer GLARS as LARS-LASSO, LARS-EN, LARS-AURE, LARS-LE, LARS-AULE, 
LARS-PCRE, LARS-rk and LARS-rd when EG  equals to the corresponding ex-
pressions of OLSE, RE, AURE, LE, AULE, PCRE, r-k class and r-d class estima-
tors, respectively. 

2.2. Selection of Regularization Parameter Values 

According to Efron et al. [11] and Zou and Hastie [12], the conventional tuning 
parameter of LARS-LASSO is 

1
ˆp

jjt β
=

= ∑ , and LARS-LASSO automatically 
controls it. The regularization parameter k of LARS-EN is selected using 10-fold 
cross-validation for each t. Similarly, we choose the regularization parameter k 
or d of proposed algorithms using 10-fold cross-validation for each t. 

3. Comparison of Proposed Algorithms 

Proposed algorithms are compared with the LARS-LASSO and LARS-EN algo-
rithms using the RMSE criterion, which is the expected prediction error of the 
algorithms, and is defined as 

( ) ( ) ( )1ˆ ˆ ˆ
new new new newRMSE

n
′= − −y X y Xβ β β            (21) 

where ( ),new newy X  denotes the new data which are not used to obtain the pa-
rameter estimates, and β̂  is the estimated value of β  using the respective al-
gorithm. A Monte Carlo simulation study and the real-world examples are used 
for the comparison. 

3.1. Simulation Study 

According to McDonald and Galarneau [14], first we generate the predictor va-
riables by using the following formula:  

( )2
, , , 11 ; 1,2, , ; 1,2, , .i j i j i mx z z i n j mρ ρ += − + = =         (22) 

where ,i jz  is an independent standard normal pseudo random number, and ρ  
is the theoretical correlation between any two explanatory variables. 

In this study, we have used a linear regression model of 100 observations and 
20 predictors. A dependent variable is generated by using the following equation  

1 ,1 2 ,2 5 ,20 ; 1,2, ,100.i i i i iy x x x iβ β β= + + + + =          (23) 

where i  is a normal pseudo random number with mean zero and common va-
riance 2σ . 

We choose ( )1 2 20, , ,β β β= β  as the normalized eigenvector corresponding 
to the largest eigenvalue of ′X X  for which 1′ =β β . To investigate the effects 
of different degrees of multicollinearity on the estimators, we choose  
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( )0.5,0.7,0.9ρ = , which represents weak, moderated and high multicollinear-
ity. For the analysis, we have simulated 50 data sets consisting of 50 observa-
tions to fit the model and 50 observations to calculate the RMSE. The 
Cross-validated RMSE of the algorithms are displayed in Figures 1-3, and the 
median cross-validated RMSE of the algorithms are displayed in Table 2-4. 

From Figures 1-3 and Tables 2-4, we can observe that LARS-PCRE, LARS-rk 
and LARS-rd algorithms show better performance compared to other algorithms 
in weak, moderated and high multicollinearity, respectively. 
 

 
Figure 1. Cross-validated RMSE values of the algorithms when 0.5ρ = . 

 

 
Figure 2. Cross-validated RMSE values of the algorithms when 0.7ρ = . 
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Figure 3. Cross-validated RMSE values of the algorithms when 0.9ρ = . 

 
Table 2. Median cross-validated RMSE values when 0.5ρ = . 

Algorithms RMSE (k, d) t Selected variables 

LARS-LASSO 3.4656 - 7.8042 16 

LARS-EN 3.4974 0.440 8.0932 17 

LARS-AURE 3.4535 0.320 8.2268 17 

LARS-LE 3.4649 0.800 7.9357 17 

LARS-AULE 3.4315 0.990 8.0093 17 

LARS-PCRE 3.3734 - 7.6216 17 

LARS-rk 3.3960 0.465 7.5012 17 

LARS-rd 3.3961 0.625 7.5108 18 

 
Table 3. Median cross-validated RMSE values when 0.7ρ = . 

Algorithms RMSE (k, d) t Selected variables 

LARS-LASSO 3.5342 - 9.1450 15 

LARS-EN 3.5796 0.360 9.4898 17 

LARS-AURE 3.5682 0.675 9.5187 17 

LARS-LE 3.5685 0.675 9.2909 17 

LARS-AULE 3.5672 0.795 9.3737 17 

LARS-PCRE 3.4526 - 8.7773 17 

LARS-rk 3.4177 0.460 8.5706 17 

LARS-rd 3.4178 0.540 8.4988 17 
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Table 4. Median Cross-validated RMSE values when 0.9ρ = . 

Algorithms RMSE (k, d) t Selected variables 

LARS-LASSO 3.5954 - 13.117 15 

LARS-EN 3.5430 0.500 13.747 16 

LARS-AURE 3.5418 0.695 13.896 17 

LARS-LE 3.5306 0.485 13.712 16 

LARS-AULE 3.5727 0.615 13.580 16 

LARS-PCRE 3.5479 - 12.391 16 

LARS-rk 3.4254 0.550 12.074 16 

LARS-rd 3.4146 0.425 12.384 16 

3.2. Real-World Examples 

Two real-world examples, namely the Prostate Cancer Data [15], and the US-
crime dataset [16], are considered to compare the performance of the proposed 
algorithms.  

Prostate Cancer Data: In the Prostate Cancer Data, the predictors are eight 
clinical measures: log cancer volume (lcavol), log prostate weight (lweight), age, 
log of the amount of benign prostatic hyperplasia (lbph), seminal vesicle inva-
sion (svi), log capsular penetration (lcp), Gleason score (gleason) and percentage 
Gleason score 4 or 5 (pgg45). The response is the log of prostate specific antigen 
(lpsa), and the dataset has 97 observations. The Variance Inflation Factor (VIF) 
values of the predictor variables of the dataset are 3.09, 2.97, 2.47, 2.05, 1.95, 
1.37, 1.36 and 1.32, and the condition number is 243, which shows high multi-
collinearity among the predictor variables. Stamey et al. [15] have examined the 
correlation between the level of prostate specific antigen with those eight clinical 
measures. Further, Tibshirani [9], Efron et al. [11] and Zou and Hastie [12] have 
used this data to examine the performance of LASSO, LARS algorithm and Enet 
estimators. This data set is attached with “lasso2” R package. We have used 67 
observations to fit the model, and 30 observations to calculate the RMSE. The 
cross-validated RMSE of the algorithms are displayed in Table 5, and Coefficient 
paths of each algorithm are displayed in Figure 4. 

From Table 5, we can observe that LARS-rd algorithm outperforms other 
algorithms on Prostate Cancer Data. From Figure 4, we can observe that 
LARS-LASSO, LARS-EN, LARS-AURE, LARS-and LARS-AULE ignore the va-
riables age and pgg45 in the final model, but LARS-PCRE, LARS-rk and 
LARS-rd ignore the variable pgg45 only. 

UScrime Data: The UScrime dataset has 16 variables with 47 observations, 
and it is attached with “MASS” R package. This data set contains the following 
columns: M (percentage of males aged 14 - 24), So (indicator variable for a 
Southern state), Ed (mean years of schooling), Po1 (police expenditure in 1960), 
Po2 (police expenditure in 1959), LF (labor force participation rate), M.F (num-
ber of males per 1000 females), Pop (state population), NW (number of non-whites  
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Figure 4. Coefficient paths of the (a) LARS-LASSO; (b) LARS-EN; (c) LARS-AURE; (d) LARS-LE; (e) LARS-AULE; (f) 

LARS-PCRE; (g) LARS-rk and (h) LARS-rd versus 
1

ˆp
jj

t β
=

= ∑  for the prostate cancer data. 

 
per 1000 people), U1 (unemployment rate of urban males 14 - 24), U2 (unem-
ployment rate of urban males 35 - 39), GDP (gross domestic product per head), 
Ineq (income inequality), Prob (probability of imprisonment), Time (average 
time served in state prisons), y (rate of crimes in a particular category per head 
of population). The variable y is considered as a dependent variable, and the va-
riable So is ignored since it is categorical. Venables and Ripley [16] have  
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examined the effect of punishment regimes on crime rates using this dataset. 
The Variance Inflation Factor (VIF) values of the predictor variables of the da-
taset are 113.028, 104.58, 9.97, 7.43, 5.19, 5.05, 4.83, 3.84, 3.69, 2.88, 2.86, 2.75, 
2.66 and 2.53, and the condition number is 923, which shows high multicolli-
nearity among the predictor variables. For the analysis, we have used 37 obser-
vations to fit the model, and 10 observations to calculate the RMSE. The 
cross-validated RMSE of the algorithms are displayed in Table 6, and Coefficient 
paths of each algorithm are displayed in Figure 5. 

From Table 6, we can observe that LARS-rd algorithm outperforms other al-
gorithms on UScrime Data. From Figure 5, we can observe that: 
 LARS-LASSO ignores the variables Ed, Ineq and Prob, 
 LARS-EN, LARS-AURE, LARS-and LARS-AULE, LARS-PCRE ignore the 

variables Ineq and Prob, and  
 LARS-rk and LARS-rd ignore the variables M, M.F and Ineq.  

Since different algorithms choose the different combination of predictor va-
riables in the final model, as shown in the plot of coefficient paths, the research-
er can decide the most suitable model for the relevant practical situation. 
 
Table 5. Cross-validated RMSE values of prostate cancer data. 

Algorithms RMSE (k, d) t Selected variables 

LARS-LASSO 0.80057 - 1.5996 6 

LARS-EN 0.80039 1.15 1.5899 6 

LARS-AURE 0.79548 2.00 1.5728 6 

LARS-LE 0.80057 0.99 1.5995 6 

LARS-AULE 0.80057 0.99 1.5996 6 

LARS-PCRE 0.78191 - 1.6705 7 

LARS-rk 0.78027 0.58 1.6678 7 

LARS-rd 0.78025 0.41 1.6678 7 

 
Table 6. Cross-validated RMSE values of UScrime data. 

Algorithms RMSE (k, d) t Selected variables 

LARS-LASSO 333.45 - 1345 11 

LARS-EN 255.27 0.71 1148 12 

LARS-AURE 252.00 0.25 1318 12 

LARS-LE 251.58 0.36 1232 12 

LARS-AULE 252.51 0.24 1311 12 

LARS-PCRE 265.57 - 1090 12 

LARS-rk 234.55 0.8 977 11 

LARS-rd 234.38 0.2 980 11 
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Figure 5. Coefficient paths of the (a) LARS-LASSO; (b) LARS-EN; (c) LARS-AURE; (d) LARS-LE; (e) LARS-AULE; (f) 

LARS-PCRE; (g) LARS-rk and (h) LARS-rd versus 
1

ˆp
jj

t β
=

= ∑  for the UScrime Data. 

4. Conclusions 

This study clearly showed that the proposed LARS-rk and LARS-rd algorithms 
performed well in the high dimensional linear regression model when mod-
erated and high multicollinearity existed among the predictor variables, respec-
tively. 
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The appropriate algorithm for a particular practical problem can be chosen 
based on the variables of interest and prediction performance by referring to the 
plot of coefficient paths. 
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