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Among several variable selection methods, LASSO is the most desirable estimation procedure for handling regularization and
variable selection simultaneously in the high-dimensional linear regression models when multicollinearity exists among the
predictor variables. Since LASSO is unstable under high multicollinearity, the elastic-net (Enet) estimator has been used to
overcome this issue. According to the literature, the estimation of regression parameters can be improved by adding prior
information about regression coefficients to the model, which is available in the form of exact or stochastic linear restrictions. In
this article, we proposed a stochastic restricted LASSO-type estimator (SRLASSO) by incorporating stochastic linear restrictions.
Furthermore, we compared the performance of SRLASSO with LASSO and Enet in root mean square error (RMSE) criterion and
mean absolute prediction error (MAPE) criterion based on a Monte Carlo simulation study. Finally, a real-world example was
used to demonstrate the performance of SRLASSO.

1. Introduction

Let us consider the linear regression model

y � Xβ + ϵ, (1)

where y is the n× 1 vector of observations on the dependent
variable, X is the n× p matrix of observations on the non-
stochastic predictor variables, β is a p× 1 vectors of un-
known coefficients, and ϵ is the n× 1 vector of random error
terms, which is independent and identically normally dis-
tributed with the mean zero and common variance σ2, that
is, E(ϵ)� 0 and E(ϵϵ′)�Ω� σ2I.

It is well-known that ordinary least square estimator
(OLSE) is a best linear unbiased estimator for model (1), and
it is defined as

􏽢βOLSE � X′X( 􏼁
−1X′y. (2)

Furthermore, researchers [1, 2] have shown that pa-
rameter estimation is improved when prior information for

regression coefficients is available, which can be in the form
of exact linear restrictions or stochastic linear restrictions.
Let us assume that there exists prior information on β in the
form of stochastic linear restriction as

ϕ � Rβ + v, (3)

where ϕ is the q× 1 vector, R is the q× pmatrix with rank q,
and v is the q× 1 vector of disturbances, such that E(v)� 0,
D(v)�E(vv′)�Ψ� σ2W (W is positive definite) and
E(vϵ′)� 0. Note that equation (3) will be the exact linear
restriction when v� 0.

.eil and Goldberger [2] proposed the mixed regression
estimator (MRE) by combining the models (1) and (3), and it
is defined as

􏽢βMRE � X′X + R′W−1R􏼐 􏼑
−1

X′y + R′W−1ϕ􏼐 􏼑. (4)

According to the literature, it was noted that OLSE and
MRE are unstable when the number of predictors is high. In
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this case, the variable selection methods such as forward
selection, backward selection, and step-wise selection have
been used. However, these methods are also unstable when
multicollinearity exists among predictor variables. As a
remedial solution to this problem, Tibshirani [3] proposed
the least absolute shrinkage and selection operator (LASSO)
by considering the model (1) to handle both multi-
collinearity and variable selection simultaneously in the
high-dimensional linear regression model. .e LASSO es-
timator is defined as

􏽢βLASSO � argmin
β

(y − Xβ)′(y − Xβ)􏼈 􏼉

subject to 􏽘

p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ t,

(5)

where t≥ 0 is a turning parameter. .e solutions of LASSO
can be obtained using either the standard quadratic pro-
gramming technique or least angle regression (LARS) [4]
algorithm. According to Zou et al. [5, 6], LASSO is unstable
when high multicollinearity exists among predictor vari-
ables. .erefore, they proposed elastic-net (Enet) estimator
as an alternative to LASSO to handle this issue. .e Enet
estimator is defined as

􏽢βEnet � argmin
β

(y − Xβ)′(y − Xβ) + k 􏽐
p

j�1
β2j

⎧⎨

⎩

⎫⎬

⎭

subject to 􏽘

p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ t.

(6)

.e Enet solutions can be obtained using LARS-EN
algorithm, which is the modified version of LARS
algorithm.

Norouzirad et al. [7] and Tuaç and Arslan [8]
attempted to combine LASSO with the exact linear re-
striction, and their work did not well define how the exact
restriction is incorporated since there is no analytical
solution for LASSO. In this article, we proposed stochastic
restricted LASSO-type estimator (SRLASSO) by com-
bining LASSO and stochastic restrictions. Furthermore,
we compared the performance of SRLASSO with LASSO
and Enet in root mean square error (RMSE) criterion and
mean absolute prediction error (MAPE) criterion using a
Monte Carlo simulation study and a real-world example.
.e structure of the rest of the article is as follows: Section
2 describes SRLASSO and algorithm to find SRLASSO
solutions, Section 3 shows the performance of SRLASSO,
and Section 4 concludes the article and references pro-
vided at the end of the paper.

2. Stochastic Restricted LASSO-Type
Estimator (SRLASSO)

By considering equation (3) as an additional constrain,
we define stochastic restricted LASSO-type estimator
(SRLASSO) as

􏽢βSRLASSO � argmin
β

(y − Xβ)′(y − Xβ)􏼈 􏼉

subject to 􏽘

p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ t,

Rβ � ϕ − v.

(7)

We can view this as a quadratic optimization problem.
Here, we have 2p+ q constraints. However, this method is
not suitable in a practical situation if p is large. So, we
propose a stochastic restricted LARS (SRLARS) algorithm,
which is the modified version of the LARS algorithm, to find
SRLASSO solutions. In SRLARS, we consolidate MRE with
LARS.

2.1. Stochastic Restricted LARS (SRLARS). Standardize the
predictor variables X to have a mean of zero and a standard
deviation of one, and response variable y to have a mean
zero. Let residuals of the models (1) and (3) be r � 􏽢ϵ and
τ � 􏽢v, respectively.

Step 1. Start with 􏽢β � 0, r0 � y, and τ0 � ϕ.

Step 2. Find the predictor Xj1 most correlated with r0 as
follows:

Xj1 � max
j

Cor Xj, r0􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌; j � 1, 2, . . . , p. (8)

Let 􏽢βji be the regression coefficient of Xji. .en, increase
the estimate of 􏽢βj1 from 0 toward MRE until any other
predictor Xj2 has a high correlation with the current residual
as Xj1 does. At this point, SRLARS proceeds in the equi-
angular direction between the two predictors Xj1 and Xj2
instead of continuing in the direction based on Xj1.

In a similar way, ith variable Xji eventually earns its way
into the active set, and then SRLARS proceeds in the
equiangular direction between Xj1, Xj2, . . ., Xji. Continue
adding variables to the active set in this way moving in the
direction defined by the least angle direction. In the inter-
mediate steps, the coefficient estimates are updated using the
following formula:

􏽢βji � 􏽢βj(i−1) + αiui, (9)

where αi is a value between 0 and 1 which represents how far
the estimate moves in the direction before another variable
enters the model and the direction changes again, and ui is
the equiangular vector.

.e direction ui is calculated using the following formula
based on MRE:

ui � Ei Ei
′ X′X + R′W−1R􏼐 􏼑Ei􏼐 􏼑

−1
Ei
′ X′ri−1 + R′W−1τi−1( 􏼁,

(10)

where Ei is the matrix with column (ej1, ej2, . . ., eji) and ej be
the jth standard unit vector in Rp, which has the index of
variables selected in each subsequent step.

.en, αi is calculated as follows:
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αi � min α+
ji, α

−
ji, α
∗
ji􏽮 􏽯 ∈ [0, 1], (11)

where

α±ji �
Cor ri−1,Xji􏼐 􏼑 ± Cor ri−1,Xj􏼐 􏼑

Cor ri−1,Xji􏼐 􏼑 ± Cor Xui,Xj􏼐 􏼑
, (12)

for any j such that 􏽢βj(i−1) � 0 and

α∗ji � −
􏽢βj(i−1)

ui

, (13)

for any j such that 􏽢βj(i−1) ≠ 0.

Step 3. If αi � α∗ji , then Ei is the matrix formed by removing
the column ej from Ei−1. .en ri and τi related to the current
step is calculated as

ri � ri−1 − αiXui,

τi � τi−1 − αiRui,
(14)

and then move to the next step where ji+1 is the value of j
such that αi � α+

ji or αi � α−
ji or α

∗
ji .

Step 4. Proceed Step 2 until αi � 1.

2.2. Properties of SRLARS. SRLARS algorithm sequentially
updates the SRLASSO estimates. It requires O(m3 + pm2)
operations, where m is the number of steps. .e prediction
performance of SRLARS is evaluated using the RMSE cri-
terion and MAPE criterion, which is described in Section 3.
According to Efron et al. [4], the conventional tuning pa-
rameter is t � 􏽐

p
j�1 |􏽢βj|, and the suitable value of turning

parameter t for the particular problem is selected using
K-fold cross-validation.

2.3. Selection of Prior Information. According to Nagar and
Kakwani [9], we can define the prior information as follows:
Let β1 be a vector of some selected q elements of β and β2 be
the rest of elements. Assume that b is the known unbiased
estimates of β1. By using the “two sigma rule,” now we can
write the range of β1 as b± 2SE(b). Based on that, we can set
the expressions of equation (3) as 􏽢r � b,

􏽢R �

1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
. . . . . . . .

0 0 . . . 1 . . . 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q×p

, β �
β1
β2

􏼠 􏼡, and

σ2 􏽢W �

SE(b1) 0 . . . 0
0 SE(b2) . . . 0
. . . . . .

0 0 . . . SE(bl)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q×q

.

3. Performance of SRLASSO

SRLASSO is compared with LASSO and Enet using the
RMSE criterion andMAPE criterion, which are the expected
prediction errors of the algorithms, and are defined as

RMSE(􏽢β) �

��������������������������
1
n
ynew − Xnew

􏽢β􏼐 􏼑′ ynew − Xnew
􏽢β􏼐 􏼑

􏽲

,

MAPE(􏽢β) �
1
n

􏽘 ynew − Xnew
􏽢β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(15)

where (ynew, Xnew) denotes the new data which are not
used to obtain the parameter estimates, n is the number
of new observations, and 􏽢β is the estimated value of β
using the respective algorithm. A Monte Carlo simula-
tion study and a real-world example are used for the
comparison.

3.1. Simulation Study. According to McDonald and Gal-
arneau [10], first we generate the predictor variables by using
the following formula:

xi,j �

�������

1 − ρ2( 􏼁

􏽱

zi,j + ρzi,m+1; i � 1, 2, . . . , n, j � 1, 2, . . . , m,

(16)

where zi,j is an independent standard normal pseudo ran-
dom number and ρ is the theoretical correlation between any
two explanatory variables.

In this study, we have used a linear regression model of
100 observations and 20 predictors. A dependent variable is
generated by using the following equation:

yi � β1xi,1 + β2xi,2 + · · · + β5xi,20 + ϵi; i � 1, 2, . . . , 100,

(17)

where ϵi is a normal pseudo random number with a mean
zero and common variance σ2.

We choose β� (β1, β2, . . ., β20) as the normalized ei-
genvector corresponding to the largest eigenvalue of X′X for
which β′β� 1. To define the prior information according to
Section 2.3, we assume that OLSE estimates of the first four
elements of β are unbiased, which are the estimates of b. To
investigate the effects of different degrees of multicollinearity
on the estimators, we choose ρ� (0.5, 0.7, 0.9), which rep-
resents weak, moderated, and high multicollinearity. For the
analysis, we have simulated 50 data sets consisting of 50
observations to fit themodel and 50 observations to calculate
the RMSE andMAPE..e cross-validated RMSE andMAPE
of the estimators are displayed in Figure 1 and Figure 2,
respectively. .e median cross-validated RMSE and MAPE
of the estimators are displayed in Table 1.

From Figures 1 and 2 and Table 1, we can observe that
SRLASSO always shows better performance compared to
LASSO and Enet in both RMSE criterion and MAPE cri-
terion under all degrees of multicollinearity.

3.2. Real-World Example. As a numerical example, the well-
known Prostate Cancer Data [11] was used to compare the
performance of SRLASSO. .is data set is attached with
“lasso2” R package. In the Prostate Cancer Data, the pre-
dictors are the following eight clinical measures: log cancer
volume (lcavol), log prostate weight (lweight), age, log of the
amount of benign prostatic hyperplasia (lbph), seminal
vesicle invasion (svi), log capsular penetration (lcp), Gleason
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score (gleason), and percentage Gleason score 4 or 5 (pgg45).
.e response is the log of prostate specific antigen (lpsa), and
the dataset has 97 observations. .e variance inflation factor
(VIF) values of the predictor variables of the dataset are 3.09,
2.97, 2.47, 2.05, 1.95, 1.37, 1.36, and 1.32, and the condition

number is 243, which shows evidence of multicollinearity
among the predictor variables. Stamey et al. [11] have ex-
amined the correlation between the level of prostate specific
antigen with those eight clinical measures. Furthermore,
Tibshirani [3] and Tibshirani et al. [4] have used this data to
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Figure 1: Cross-validated RMSE values of the estimators when (a) ρ� 0.5, (b) ρ� 0.7, and (c) ρ� 0.9.
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examine the performance of LASSO and LARS algorithm,
respectively. We have used 67 observations to fit the model
and 30 observations to calculate RMSE and MAPE. We
assume that OLSE estimates of the first three regression
coefficients of Prostate Cancer Data are unbiased and we
defined the prior information for this data based on Section 2.3.

.e cross-validated RMSE and MAPE of the estimators are
displayed in Table 2, and coefficient paths of each estimator are
displayed in Figure 3.

From Table 2, we can observe that SRLASSO outper-
forms LASSO and Enet on Prostate Cancer Data in both
RMSE criterion and MAPE criterion. Furthermore, we can
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Figure 2: Cross-validated MAPE values of the estimators when (a) ρ� 0.5, (b) ρ� 0.7, and (c) ρ� 0.9.
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Table 1: Median cross-validated RMSE and MAPE values.

Estimators RMSE MAPE t k Selected variables

ρ� 0.5
LASSO 3.440 2.830 7.60 — 16
Enet 3.454 2.854 7.14 0.01 17

SRLASSO 3.280 2.63 6.16 — 15

ρ� 0.7
LASSO 3.512 2.804 8.66 — 15
Enet 3.609 2.879 8.95 0.01 17

SRLASSO 3.322 2.676 6.43 — 15

ρ� 0.9
LASSO 3.502 2.769 13.48 — 15
Enet 3.466 2.814 14.47 0.01 16

SRLASSO 3.318 2.732 11.66 — 15

Table 2: Cross-validated RMSE and MAPE values of Prostate Cancer Data.

Estimators RMSE MAPE t k
LASSO 0.8567 0.6496 1.2263 —
Enet 0.8063 0.6010 1.2897 0.01
SRLASSO 0.7833 0.5803 1.0415 —
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Figure 3: Continued.
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note that the selection of variables is different for each es-
timator by comparing Figures 3(a)–3(c).

4. Conclusions

.is study clearly showed that SRLASSO does a better
performance than LASSO and Enet in both RMSE criterion
and MAPE criterion when multicollinearity exists among
the predictor variables. .erefore, SRLASSO can be used as
an alternative estimator of LASSO and Enet if prior infor-
mation is accessible on the regression coefficients. .e
proposed SRLARS algorithm can be used to obtain
SRLASSO solutions.
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